各種適宜的硬車刀具(金剛石刀具、CBN刀具、陶瓷刀具以及涂層硬質合金刀具等)實現(xiàn)了對淬硬鋼(硬度為45~68 HRC)的硬車削。但金剛石刀具與鐵基材料在高溫下會發(fā)生化學反應,所以一般不用于切削軸承鋼材料;陶瓷、硬質合金刀具在切削硬度大于50 HRC的淬硬鋼工件時往往呈現(xiàn)出較弱的切削性能。因此,對于軸承鋼的硬車削適合的刀具材料還是各類CBN刀具。
雖然磨削在相對較高的進給速率下能產生良好的表面精度,但硬車在不使用冷卻劑的條件下,采用較低的切削深度和進給速率(相比磨削),常規(guī)硬車削也能縮減高達60%的加工時間,材料去除率顯著提高,加工表面精度與磨削相當甚至更好。另外,多步硬車削操作只需單次設定就足夠,而磨削需要多次設定,這也有助于通過硬車削達到高精度。
切削參數(shù)是影響切削力的重要因素。切削參數(shù)選擇不當,會產生較高的切削力,影響表面加工精度,對刀具以及整個工序都不利。精硬車的切削條件與常規(guī)材料的車削有很大的不同,需要對切削力進行深入研究。
國內外大量的研究表明,在硬車削精加工中(切削深度一般小于刀尖圓弧半徑/刀頭半徑),切深抗力(徑向分量)遠大于其他2個方向上的切削力,這有別于傳統(tǒng)切削過程中徑向力只有主切削力的0.3~0.5倍。因此在具有靜、動態(tài)特性的類似加工系統(tǒng)中不能忽視硬車過程中的徑向力。Alexandre對比了不同刀具(陶瓷刀具、不同CBN含量的PcBN刀具)切削軸承鋼時,發(fā)現(xiàn)在三個方向上的切削力中,切深抗力大,其次是主切削力和進給抗力。很多研究學者發(fā)現(xiàn)低速車削條件下,由于低溫以及積屑瘤( BUE)的形成,在硬車過程中會出現(xiàn)較高的切削力。可能是由于高速切削產生較高的切削溫度造成了工件材料的熱軟化,因此切削力會隨切削速度的增加而減小。切削力隨進給速度、切削深度以及刀頭半徑的增加而增加,而且切削深度對切削力的影響大,進給量次之,切削速度的影響較小。大量科研人員致力于通過經(jīng)驗公式計算、建立理論模型以及有限元仿真等方法預測硬車削時產生的切削力,以期實現(xiàn)軸承鋼的精密硬車削技術。反應在實際中就是對切削用量(切削速度、進給量、切削深度/背吃刀量)的優(yōu)化選擇。
1)切削速度的選擇
針對不同的刀具、工件材料,切削速度的選擇各不相同。在硬車削過程中,工件硬度較大,適當提高切削速度,有利于加大工件材料的軟化效應,減小切削力。但當切削速度過高時,較大的切削溫度會加劇刀具的磨損,使加工質量下降。當出現(xiàn)加熱軟化引起切削力減小時,切削速度會達到臨界范圍,因此,在所選參數(shù)范圍內采用中等切削深度以及相對較低且適宜的切削速度,會更節(jié)能,如切削速度為200~250 m/min。
2)進給量的選擇
過大的進給量會會引起切削振動,影響加工表面質量,因此應選擇較小的進給量,如低速時0.06~0.09 mm/r,高速時不超過0.15 mm/r。
3)切削深度的選擇
切削深度一般為0.10~0.25 mm,切削深度對切削力影響大,切削力過大,增大加工變形,影響加工精度。